Computer scientists at Carnegie Mellon University say plowing through millions of tweets to gauge fan sentiment probably isn't going to help you make a mint betting on NFL games, though doing this themselves has given them newfound respect for sports bookies.
The researchers, who will report the findings of a study of three years' worth of Twitter posts at an upcoming analytics conference in Prague, were trying to figure out if crunching numbers based on the microblogging site's content could make predicting football game outcomes any easier.
Their conclusion was that using machine learning tools to analyze the tweets (42 million a day during the 2012 season) wasn't helpful with winning over/under bets or predicting straight game results, but was slightly helpful in picking against the spread (55 percent accurate). Why? Because bookmakers take into account things like fan sentiment in setting point spreads, and the CMU researchers were analyzing tweets based on volumes of hashtags about specific teams, plus looking for positive or negative words in such posts.
"One thing that surprised us is how hard setting the point spread is to do well," said Christopher Dyer, assistant professor in CMU's Language Technologies Institute, in a statement. "And the sports books are very, very good."
To read this article in full or to leave a comment, please click here
ConversionConversion EmoticonEmoticon